RMgmDB - Rodent Malaria genetically modified Parasites

Summary

RMgm-5085
Malaria parasiteP. berghei
Genotype
DisruptedGene model (rodent): PBANKA_1429200; Gene model (P.falciparum): PF3D7_1213400; Gene product: kelch domain-containing protein, putative (S20)
Transgene
Transgene not Plasmodium: GFP (gfp-mu3)
Promoter: Gene model: PBANKA_1133300; Gene model (P.falciparum): PF3D7_1357100; Gene product: elongation factor 1-alpha (eef1a)
3'UTR: Gene model: PBANKA_0719300; Gene product: bifunctional dihydrofolate reductase-thymidylate synthase, putative (dhfr/ts)
Replacement locus: Gene model: PBANKA_0306000; Gene product: 6-cysteine protein (230p)
PhenotypeNo phenotype has been described
Last modified: 26 August 2021, 13:26
  *RMgm-5085
Successful modificationThe parasite was generated by the genetic modification
The mutant contains the following genetic modification(s) Gene disruption, Introduction of a transgene
Reference (PubMed-PMID number) Reference 1 (PMID number) : 34421862
MR4 number
Parent parasite used to introduce the genetic modification
Rodent Malaria ParasiteP. berghei
Parent strain/lineP. berghei ANKA
Name parent line/clone P. berghei ANKA 507cl1 (RMgm-7)
Other information parent lineP.berghei ANKA 507cl1 (RMgm-7) is a reference ANKA mutant line that expresses GFP under the control of a constitutive promoter. This reference line does not contain a drug-selectable marker (PubMed: PMID: 16242190).
The mutant parasite was generated by
Name PI/ResearcherFriesen HC, Matuschewski K
Name Group/DepartmentDepartment of Molecular Parasitology, Institute of Biology
Name InstituteHumboldt University
CityBerlin
CountryGermany
Name of the mutant parasite
RMgm numberRMgm-5085
Principal names20(-) (clone 2 and 3)
Alternative name
Standardized name
Is the mutant parasite cloned after genetic modificationYes
Phenotype
Asexual blood stageNot different from wild type
Gametocyte/GameteNot different from wild type
Fertilization and ookineteNot different from wild type
OocystNot different from wild type
SporozoiteNot different from wild type
Liver stageNot different from wild type
Additional remarks phenotype

Mutant/mutation
The mutant lacks expression of S20 and expresses GFP under control of the constitutive eef1a promoter

Protein (function)
S20 orthologs are present in all Plasmodium species and a similar protein is found in T. gondii (TGGT1_229000). S20 orthologs are also present in other Coccidia, for instance Sarcocystis neurona (SRCN_6348), Besnoitia besnoiti (BESB_083580), Eimeria tenella (ETH_00029095), and Cyclospora cayetanensis (cyc_00626), but not Piroplasms. S20 proteins contain kelch motifs, segments of approximately 50 amino acid residues that form a single four-stranded, antiparallel beta-sheet. Kelch motifs are widely distributed in eukaryotic and prokaryotic proteins with divergent functions. The high degree of S20 protein sequence conservation among Plasmodium is indicative of a possible conserved function. The sequence of H2-Kb-restricted epitope VNYSFLYFL (Hafalla et al., 2013) is also relatively well maintained across Plasmodium species.
In a  high-content screen for CD8+ epitopes in the H2Kb/Db (C57BL/6)-restricted genetic background, S20 was identified with a distinct dominant epitope.

Phenotype
No phenotype detected throughout the complete life cycle

Additional information
Up-regulation of PbS20 mRNA in midgut and salivary gland sporozoites. Transcript levels dropped toward the end of liver stage maturation and remained low during blood infection.
Polyclonal anti-PbS20 peptide sera was generated. S20 could be detected in salivary gland sporozoites and in sporozoites that recently invaded hepatoma cells. However, 24 h after invasion, S20 was no longer detectable. The S20 antisera could only recognize S20 in sporozoites that had been permeabilized, which indicates that in contrast to CSP, S20 is restricted to the sporozoite interior. The specificity of the S20 signal in sporozoites was verified in immunofluorescence assays (IFAs) using s20(-) P. berghei, where no signal was detected.

From the Abstract:
'Protective immunity of irradiation-arrested s20(-) sporozoites in single, double and triple immunizations was similar to irradiated unaltered sporozoites in homologous challenge experiments. These findings demonstrate the presence of the immunogenic Plasmodium pre-erythrocytic determinant S20, which is not essential for eliciting protection. Although S20 is not needed for colonization of the mammalian host and for initiation of a blood infection, it is conserved amongst Plasmodium species. Malarial parasites express conserved, immunogenic proteins that are not required to establish infection but might play potential roles in diverting cellular immune responses.'

Other mutants


  Disrupted: Mutant parasite with a disrupted gene
Details of the target gene
Gene Model of Rodent Parasite PBANKA_1429200
Gene Model P. falciparum ortholog PF3D7_1213400
Gene productkelch domain-containing protein, putative
Gene product: Alternative nameS20
Details of the genetic modification
Inducable system usedNo
Additional remarks inducable system
Type of plasmid/construct used(Linear) plasmid double cross-over
PlasmoGEM (Sanger) construct/vector usedNo
Modified PlasmoGEM construct/vector usedNo
Plasmid/construct map
Plasmid/construct sequence
Restriction sites to linearize plasmid
Partial or complete disruption of the geneComplete
Additional remarks partial/complete disruption
Selectable marker used to select the mutant parasitetgdhfr
Promoter of the selectable markereef1a
Selection (positive) procedurepyrimethamine
Selection (negative) procedureNo
Additional remarks genetic modificationThe P. berghei S20 gene was deleted by a double homologous recombination strategy using a standard replacement knockout plasmid (pB3D). For this aim, fragments from the 5′ and 3′ ends were amplified with primers S20SacII and S20NotI, and with the primer pair S20HindIII and S20KpnI using PCR. Subsequently, the 5′ PCR fragment was double digested overnight at 37°C with the restriction enzymes SacII and NotI, while the restriction enzymes HindIII and KpnI were used for the 3′ fragment digestion. 10 μg plasmid was linearized with SacII and KpnI for transfection
Additional remarks selection procedure
Primer information: Primers used for amplification of the target sequences  Click to view information
Primer information: Primers used for amplification of the target sequences  Click to hide information
Sequence Primer 1
Additional information primer 1
Sequence Primer 2
Additional information primer 2
Sequence Primer 3
Additional information primer 3
Sequence Primer 4
Additional information primer 4
Sequence Primer 5
Additional information primer 5
Sequence Primer 6
Additional information primer 6

  Transgene: Mutant parasite expressing a transgene
Type and details of transgene
Is the transgene Plasmodium derived Transgene: not Plasmodium
Transgene nameGFP (gfp-mu3)
Details of the genetic modification
Inducable system usedNo
Additional remarks inducable system
Type of plasmid/construct(Linear) PCR construct double cross-over
PlasmoGEM (Sanger) construct/vector usedNo
Modified PlasmoGEM construct/vector usedNo
Plasmid/construct map
Plasmid/construct sequence
Restriction sites to linearize plasmid
Selectable marker used to select the mutant parasitegfp (FACS)
Promoter of the selectable markereef1a
Selection (positive) procedureFACS (flowsorting)
Selection (negative) procedureNo
Additional remarks genetic modificationThe GFP gene (1 copy) has been inserted into the 230p locus (PBANKA_030600) by double cross-over integration.
Additional remarks selection procedureThis reporter mutant expressing GFP does not contain a drug-selectable marker. This mutant has been selected by FACS sorting after transfection based on GFP fluorescence.
Other details transgene
Promoter
Gene Model of Parasite PBANKA_1133300
Gene Model P. falciparum ortholog PF3D7_1357100
Gene productelongation factor 1-alpha
Gene product: Alternative nameeef1a
Primer information details of the primers used for amplification of the promoter sequence  Click to view information
Primer information details of the primers used for amplification of the promoter sequence  Click to hide information
Sequence Primer 1
Additional information primer 1
Sequence Primer 2
Additional information primer 2
3'-UTR
Gene Model of Parasite PBANKA_0719300
Gene productbifunctional dihydrofolate reductase-thymidylate synthase, putative
Gene product: Alternative namedhfr/ts
Primer information details of the primers used for amplification the 3'-UTR sequences  Click to view information
Primer information details of the primers used for amplification the 3'-UTR sequences  Click to hide information
Sequence Primer 1
Additional information primer 1
Sequence Primer 2
Additional information primer 2
Insertion/Replacement locus
Replacement / InsertionReplacement locus
Gene Model of Parasite PBANKA_0306000
Gene product6-cysteine protein
Gene product: Alternative name230p
Primer information details of the primers used for amplification of the target sequences  Click to view information
Primer information details of the primers used for amplification of the target sequences  Click to hide information
Sequence Primer 1
Additional information primer 1
Sequence Primer 2
Additional information primer 2
Sequence Primer 3
Additional information primer 3
Sequence Primer 4
Additional information primer 4